ISSN 1600-5368

Zhi-Qian Liu, Zhi-Qian Liu, Xiao-Chen Yan and Hai-Bo Wang*

Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China

Correspondence e-mail: wanghaibo@njut.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.010 Å R factor = 0.109 wR factor = 0.209 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 2-[3-(4-bromophenyl)-1,2,4-oxadiazol-5-ylmethoxy]phenylacetate

The title compound, $C_{18}H_{15}FN_2O_4$, was synthesized by the reaction of methyl (2-hydroxyphenyl)acetate and 3-(4-bromo)phenyl-5-chloromethyl-1,2,4-oxadiazole. Weak intra-molecular C-H···N hydrogen bonds are observed in the crystal structure.

Received 26 May 2006 Accepted 30 May 2006

Comment

1,2,4-Oxadiazole derivatives are of great interest because of their biological properties. Some derivatives of 1,2,4-oxadiazoles have intrinsic analgesic (Terashita *et al.*, 2002), anti-inflammatory (Nicolaides *et al.*, 1998) and antipicornaviral (Romero, 2001) properties and show high efficacy as agonists [*e.g.* for muscarinic (Macor *et al.*, 1996), adrenergic (Quagliato & Andrae, 2002) and 5-hydroxytryptamine receptors (Gur *et al.*, 2001)] and antagonists [*e.g.* for angiotensin (Naka & Kubo, 1999) and adhesion receptors (Juraszyk *et al.*, 1997)]. We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are given in Table 1.

Experimental

Methyl (2-hydroxyphenyl)acetate (20 mmol) was dissolved in acetone (20 ml) and potassium carbonate (30 mmol) was added in one portion. 3-(4-Fluorophenyl)-5-chloromethyl-1,2,4-oxadiazole (20 mmol) in acetone (20 ml) was added to this mixture. The resulting mixture was refluxed for 6 h and then concentrated under reduced pressure to afford crude compound (I). Pure compound (I) was obtained by recrystallization from ethyl acetate. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

```
Crystal data
C<sub>18</sub>H<sub>15</sub>FN<sub>2</sub>O<sub>4</sub>
```

```
M_r = 342.32
Monoclinic, P2_1/c

a = 11.603 (2) Å

b = 9.0170 (18) Å

c = 15.692 (3) Å

\beta = 96.90 (3)°

V = 1629.9 (6) Å<sup>3</sup>
```

Z = 4 $D_x = 1.395 \text{ Mg m}^{-3}$ Mo K\alpha radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) KBlock, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$

© 2006 International Union of Crystallography All rights reserved

organic papers

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.969, T_{\max} = 0.989$ 3165 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.109$ $wR(F^2) = 0.209$ S = 1.053165 reflections 226 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

F-C16	1.378 (7)	O4-C11	1.345 (7)
O1-C2	1.338 (6)	O4-N1	1.403 (6)
O1-C1	1.430 (6)	N1-C12	1.315 (8)
O2-C2	1.200 (6)	N2-C11	1.295 (6)
O3-C9	1.408 (7)	N2-C12	1.355 (7)
O3-C10	1.445 (8)		
C2-O1-C1	116.3 (4)	O3-C10-C11	112.3 (6)
C9-O3-C10	116.0 (5)	N2-C11-O4	111.1 (5)
C11-O4-N1	107.6 (5)	N2-C11-C10	134.6 (6)
C12-N1-O4	102.6 (5)	O4-C11-C10	114.1 (6)
C11-N2-C12	104.6 (5)	N1-C12-N2	114.1 (5)
O2-C2-O1	122.5 (5)	N1-C12-C13	122.0 (6)
O2-C2-C3	124.6 (5)	N2-C12-C13	123.9 (6)
O1-C2-C3	112.7 (5)	C17-C16-F	117.7 (9)
C8-C9-O3	126.4 (7)	F-C16-C15	118.2 (8)
C4-C9-O3	111.1 (6)		

All H atoms were placed in calculated positions, with C–H distances in the range 0.93–0.97 Å. They were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 (methyl) times $U_{eq}(C)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Siemens, 1996); software used to prepare material for publication: *SHELXL97*.

References

Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

3165 independent reflections 1291 reflections with $I > 2\sigma(I)$ $R_{int} = 0.000$ $\theta_{max} = 26.0^{\circ}$ 3 standard reflections every 200 reflections intensity decay: none

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.01P)^2 \\ &+ 5P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.68 \ e \ {\rm \AA}^{-3} \\ \Delta\rho_{min} = -0.45 \ e \ {\rm \AA}^{-3} \end{split}$$

Figure 1

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the intramolecular $C-H \cdots N$ hydrogen bond.

- Gur, E., Dremencov, E., Lerer, B. & Newman, M. E. (2001). *Eur. J. Pharmacol.* **411**, 115–122.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Juraszyk, H., Gante, J., Wurziger, H., Bernotat-Danielowski, S. & Melzer, G. (1997). PCT Int. Appl. No. 9 744 333.
- Macor, J. E., Ordway, T., Smith, R. L., Verhoest, P. R. & Mack, R. A. (1996). J. Org. Chem. 61, 3228–3229.
- Naka, T. & Kubo, K. (1999). Curr. Pharm. Des. 5, 453-472.
- Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Quagliato, D. A. & Andrae, P. M. (2002). PCT Int. Appl. WO 0206250.
- Romero, J. R. (2001). Exp. Opin. Invest. Drugs, 10, 369-379.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Terashita, Z., Naruo, K. & Morimoto, S. (2002). PCT Int. Appl. WO 02060439.